Efficient Haplotype Block Partitioning and Tag SNP Selection Algorithms under Various Constraints
نویسندگان
چکیده
Patterns of linkage disequilibrium plays a central role in genome-wide association studies aimed at identifying genetic variation responsible for common human diseases. These patterns in human chromosomes show a block-like structure, and regions of high linkage disequilibrium are called haplotype blocks. A small subset of SNPs, called tag SNPs, is sufficient to capture the haplotype patterns in each haplotype block. Previously developed algorithms completely partition a haplotype sample into blocks while attempting to minimize the number of tag SNPs. However, when resource limitations prevent genotyping all the tag SNPs, it is desirable to restrict their number. We propose two dynamic programming algorithms, incorporating many diversity evaluation functions, for haplotype block partitioning using a limited number of tag SNPs. We use the proposed algorithms to partition the chromosome 21 haplotype data. When the sample is fully partitioned into blocks by our algorithms, the 2,266 blocks and 3,260 tag SNPs are fewer than those identified by previous studies. We also demonstrate that our algorithms find the optimal solution by exploiting the nonmonotonic property of a common haplotype-evaluation function.
منابع مشابه
Haplotype Block Partitioning and tagSNP Selection under the Perfect Phylogeny Model
Single Nucleotide Polymorphisms (SNPs) are the most usual form of polymorphism in human genome.Analyses of genetic variations have revealed that individual genomes share common SNP-haplotypes. Theparticular pattern of these common variations forms a block-like structure on human genome. In this work,we develop a new method based on the Perfect Phylogeny Model to identify haplo...
متن کاملHapBlock: haplotype block partitioning and tag SNP selection software using a set of dynamic programming algorithms
UNLABELLED Recent studies have revealed that linkage disequilibrium (LD) patterns vary across the human genome with some regions of high LD interspersed with regions of low LD. Such LD patterns make it possible to select a set of single nucleotide polymorphism (SNPs; tag SNPs) for genome-wide association studies. We have developed a suite of computer programs to analyze the block-like LD patter...
متن کاملHapBlock – A Suite of Dynamic Programming Algorithms for Haplotype Block Partitioning and Tag SNP Selection Based on Haplotype and Genotype Data
The suite of programs, HapBlock, is developed for haplotype block partitioning and tag SNP selection under the joint guidance of Ting Chen, Fengzhu Sun, and Michael Waterman within the Center for Computational and Experimental Genomics at the University of Southern California and with collaboration with Zhaohui Qin and Jun Liu in the department of statistics at Harvard University. This suite of...
متن کاملA Set of Dynamic Programming Algorithms for Haplotype Block Partitioning and Tag SNP Selection via Haplotype Data or Genotype Data
Recent studies have revealed a haplotype block structure for human genome such that it can be decomposed into large blocks with high linkage disequilibrium (LD) and relatively limited haplotype diversity, separated by short regions of low LD. One of the practical implications of this observation is that only a small number of tag SNPs can be chosen for mapping genes responsible for human comple...
متن کاملHaplotype block partitioning and tag SNP selection using genotype data and their applications to association studies.
Recent studies have revealed that linkage disequilibrium (LD) patterns vary across the human genome with some regions of high LD interspersed by regions of low LD. A small fraction of SNPs (tag SNPs) is sufficient to capture most of the haplotype structure of the human genome. In this paper, we develop a method to partition haplotypes into blocks and to identify tag SNPs based on genotype data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013